Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer.
نویسندگان
چکیده
VT-464 is a novel, nonsteroidal, small-molecule CYP17A1 inhibitor with 17,20-lyase selectivity. This study evaluates the anticancer activity of VT-464 compared with abiraterone (ABI) in castrate-resistant prostate cancer cell lines and xenograft models that are enzalutamide (ENZ)-responsive (C4-2) or ENZ-resistant (MR49C, MR49F). In vitro, androgen receptor (AR) transactivation was assessed by probasin luciferase reporter, whereas AR and AR-regulated genes and steroidogenic pathway enzymes were assessed by Western blot and/or qRT-PCR. The MR49F xenograft model was used to compare effects of oral VT-464 treatment to vehicle and abiraterone acetate (AA). Steroid concentrations were measured using LC-MS chromatography. VT-464 demonstrated a greater decrease in AR transactivation compared with ABI in C4-2 and both ENZ-resistant cell lines. At the gene and protein level, VT-464 suppressed the AR axis to a greater extent compared with ABI. Gene transcripts StAR, CYP17A1, HSD17B3, and SRD5A1 increased following treatment with ABI and to a greater extent with VT-464. In vivo, intratumoral androgen levels were significantly lower after VT-464 or AA treatment compared with vehicle, with the greatest decrease seen with VT-464. Similarly, tumor growth inhibition and PSA decrease trends were greater with VT-464 than with AA. Finally, an AR-antagonist effect of VT-464 independent of CYP17A1 inhibition was observed using luciferase reporter assays, and a direct interaction was confirmed using an AR ligand binding domain biolayer interferometry. These preclinical results suggest greater suppression of the AR axis with VT-464 than ABI that is likely due to both superior selective suppression of androgen synthesis and AR antagonism.
منابع مشابه
Molecular Pathways Molecular Pathways: Inhibiting Steroid Biosynthesis in Prostate Cancer
A significant proportion of castration-resistant prostate cancers (CRPC) remains driven by ligand activation of the androgen receptor. Although the testes are the primary source of testosterone, testosterone can also be produced from peripheral conversion of adrenal sex hormone precursors DHEA and androstenedione in the prostate and other tissues. CYP17A1 catalyzes two essential reactions in th...
متن کاملMolecular pathways: Inhibiting steroid biosynthesis in prostate cancer.
A significant proportion of castration-resistant prostate cancers (CRPC) remains driven by ligand activation of the androgen receptor. Although the testes are the primary source of testosterone, testosterone can also be produced from peripheral conversion of adrenal sex hormone precursors DHEA and androstenedione in the prostate and other tissues. CYP17A1 catalyzes two essential reactions in th...
متن کاملA Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer
Of patients with castrate resistant prostate cancer (CRPC), less than 25-33% survive more than five years. Recent studies have implicated estrogen, acting either alone or synergistically with androgens in the development of castrate resistant prostate cancer. Several in vitro and in vivo studies, as well as a limited number of clinical trials, have highlighted the potential of selective estroge...
متن کاملCancer Therapy: Preclinical A Novel HSP90 Inhibitor Delays Castrate-Resistant Prostate Cancer without Altering Serum PSA Levels and Inhibits Osteoclastogenesis
Purpose: Prostate cancer responds initially to antiandrogen therapies; however, progression to castration-resistant disease frequently occurs. Therefore, there is an urgent need for novel therapeutic agents that can prevent the emergence of castrate-resistant prostate cancer (CRPC). HSP90 is a molecular chaperone involved in the stability of many client proteins including Akt and androgen recep...
متن کاملTargeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer.
Many strategies used to kill cancer cells induce stress-responses that activate survival pathways to promote emergence of a treatment resistant phenotype. Secretory clusterin (sCLU) is a stress-activated cytoprotective chaperone up-regulated by many varied anticancer therapies to confer treatment resistance when overexpressed. sCLU levels are increased in several treatment recurrent cancers inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2015